Method for Assigning Structure of 1,2,3-Triazoles

Xavier Creary,* Andrew Anderson, Carl Brophy, Frances Crowell, and Zachary Funk

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States

Supporting Information

ABSTRACT: 1,4-Disubstituted-1*H*-1,2,3-triazoles 1 can easily be distinguished from the isomeric 1,5-disubstituted-1*H*-1,2,3-triazoles 2 by simple one-dimensional ¹³C NMR spectroscopy using gated decoupling. The C₅ signal of 1 appears at $\delta \sim 120$ ppm, while the C₄ signal of 2 appears at $\delta \sim 133$ ppm. Computational studies also predict the upfield shift of C₅ of 1 relative to C₄ in 2.

riazoles are a class of compounds of much recent interest. They are generally prepared by cycloaddition reactions of azides with alkynes. The original thermal cycloaddition reaction discovered by Huisgen¹ has been largely supplanted by coppercatalyzed reactions of azides with alkynes, which give 1,4disubstituted-1H-1,2,3-triazoles of general structure 1.2,3 References to this copper-catalyzed reaction, since Sharpless first introduced the concept of the "Click Reaction" in 2001, are too numerous to list. Hence, a few general reviews are given.⁵ The regioisomeric 1,5-disubstituted-1*H*-1,2,3-triazoles 2 can often be prepared by a ruthenium-catalyzed reaction,⁶ or by addition of acetylide anions to azides.⁷ The structures of many of these triazoles were proven by X-ray crystallographic analysis^{2,6} or by more sophisticated NMR methods including NOE,^{2,3} HMQC, HSQC, and HMBC⁸ studies. While structures of triazoles in the Sharpless/Fokin studies and in certain other studies have been rigorously demonstrated, in many subsequent studies in the literature, the structures of triazoles are not "proven" but are simply assigned using the assumption that Cu catalysis gives isomers of type 1, while Ru catalysis gives type 2 isomers. While these assumptions are most likely correct, a simple method for verification of structure is desirable.

X-ray, NOE, and multidimensional NMR techniques are powerful methods for structure elucidation. However, they are not always routine, rapid, simple, or inexpensive techniques. As part of another investigation, we have generated a number of isomeric triazoles for mechanistic studies. We therefore wanted a simple protocol for rapidly distinguishing between the isomeric triazoles 1 and 2. We now report that structures can be easily assigned from simple 1-dimensional ¹³C NMR data.

Figure 1 shows an expanded region of the ¹³C NMR spectrum of triazole 1a prepared by a Cu catalyzed reaction. Spectrum A is the standard proton decoupled spectrum, while

Figure 1. (A) Expanded 13 C NMR of 1a. (B) 1 H coupled 13 C NMR of 1a.

spectrum B uses the relatively old and simple gated decoupling sequence (decoupler off during acquisition), where coupling to neighboring hydrogens is observed. Identification of the C₅ carbon signal of **1a** is straightforward due to the relatively large C–H coupling constant of 191 Hz. The corresponding C–H coupling constants for aromatic carbons are much smaller (~155 Hz). The doublet of triplets (J = 191, 2.7 Hz) at δ 119.5 is due to the C₅ carbon coupled to the directly bonded hydrogen and 3-bond coupled to the two benzylic hydrogens.

Received: June 27, 2012 **Published:** August 15, 2012

Table 1. $^{13}\mathrm{C}$ Shifts of C_5 of Triazole 1 and C_4 of Triazole 2

This rapid "low tech" experiment gives the same coupling information as the more tedious HMQC and HMBC methods. It also gives precise values of coupling constants, which are used to readily assign the C₅ signal. The single frequency decoupled spectrum (not shown), where the benzylic hydrogens at δ = 5.57 ppm in the ¹H NMR spectrum are irradiated, confirms that the triplet is due to long-range coupling to the benzylic hydrogens. This verifies that the carbon signal at δ 119.5 is indeed due to the C₅ carbon of **1a**.

Figure 2 shows an expanded region of the ¹³C NMR spectrum of the isomeric triazole 2a. The signal at $\delta = 133.3$

Figure 2. (A) Expanded 13 C NMR of 2a. (B) 1 H coupled 13 C NMR of 2a.

ppm is due to the C₄ carbon, and this is confirmed by the gated decoupling experiment that shows a doublet (J = 195 Hz) due to the directly attached hydrogen. The 4-bond coupling to the benzylic hydrogens is not observed. These ¹³C spectra are easy to acquire and may be obtained in less that one hour using routine techniques.

We have now prepared and analyzed the 19 pairs of triazoles in Table 1 by these simple ¹³C NMR methods. In all of these triazoles, the C₅ carbon of 1 is always further upfield than the C₄ carbon of 2. The average chemical shift of C₅ for triazoles 1a-10 is $\delta = 120 \pm 3$ ppm, while the shift of C₄ is $\delta = 133 \pm 3$ ppm for 2a-20. The previously reported triazoles 3,⁹ 4,¹⁰ and 5¹¹ (whose structures were based solely on the coppercatalyzed synthetic method) have also been analyzed, and the C₅ shifts also fall within the $\delta = 120 \pm 3$ ppm range.

substrates	R_1	R_2	C_5 of 1 (ppm)	C_4 of 2 (ppm)
1a/2a	Ph	PhCH ₂	119.5	133.3
1b/2b	Ph	<i>n</i> -hexyl	119.2	133.0
1c/2c	<i>n</i> -Bu	PhCH ₂	120.4	132.5
1d/2d	<i>n</i> -Bu	<i>n</i> -hexyl	120.3	131.9
1e/2e	CH ₂ OAc	PhCH ₂	123.6	135.3
1f/2f	$C(OH)Me_2$	PhCH ₂	119.0	130.9
1g/2g	Ph	Ph	117.6	133.4
1h/2h	<i>n</i> -Bu	Ph	118.8	132.3
1i/2i	$C(OH)Ph_2$	<i>n</i> -hexyl	122.3	134.8
1j/2j	CH ₂ OPh	PhCH ₂	122.6	134.6
1k/2k	Ph	PhCOCH ₂	121.5	132.9
11/21	Ph	cyclohexyl	117.3	132.6
1m/2m	<i>n</i> -Bu	cinnamyl	120.3	132.4
1n/2n	$CH(OEt)_2$	PhCH ₂	121.8	134.9
1o/2o	CH ₂ OH	PhCH ₂	121.6	136.3
1p/2p	СНО	PhCH ₂	125.1	141.2
1q/2q	CO ₂ Et	PhCH ₂	127.3	138.2
1r/2r	COCH ₃	PhCH ₂	125.2	138.6
1s/2s	OEt	PhCH ₂	105.9	113.8

Computational Studies. While ¹³C chemical shifts of the C_5 and C_4 carbons of 1 and 2 appear to be a reliable empirical method of assigning structure, we sought a theoretical basis for these shifts. GIAO calculated shifts¹² (B3LYP/6-31G* level) of C_5 and C_4 for compounds 6 and 7 are $\delta = 114$ and 127 ppm, respectively. These calculated values are about 6 ppm upfield from the experimental values for 1 and 2. However, there is still a large difference (13 ppm) between C_5 of 6 and C_4 of 7. This calculated difference is completely consistent with the experimental findings.

Why is the C_5 carbon in isomer 1 further upfield than C_4 in isomer 2? A valence bond approach can rationalize this observation. While there are a number of resonance contributors in 1, consider the important form 1y (which

The Journal of Organic Chemistry

places formal negative charge on the more electronegative nitrogen N_3) and form 1z. The upfield position of the C_5 carbon in 1 can be attributed to resonance donation from the N_1 nitrogen, which places formal negative charge on N_3 and consequently on C_5 carbon. Analogous resonance donation from N_1 in isomer 2 does not place formal negative charge on C_4 . Instead, the quarternary C_5 of isomer 2 is predicted to be shifted upfield (form 2z). This is indeed the case experimentally, where C_5 of isomers 2 are all upfield relative to the analogous quaternary carbons C_4 in isomers 1.

Exceptions. Carbonyl containing substrates 1p-1r give C_5 shifts that are about 6 ppm downfield from the $\delta = 120 \pm 3$ ppm range. The isomeric substrates 2p-2r follow a similar trend, and shifts are also about 6 ppm downfield from the $\delta = 133 \pm 3$ ppm range. Computational predictions agree with these experimental findings and B3LYP/6-31G* GIAO calculated shifts in aldehydes 8 and 9 are 5 and 7 ppm downfield, respectively, from calculated shifts in 6 and 7. Standard carbonyl group resonance effects, as in 8a, account for the further downfield shifts of C_5 in carbonyl containing substrates 1p-1r, as well as the further downfield shifts of C_4 in 2p-2r.

Other triazoles, where chemical shifts of C_5 and C_4 lie outside of the "expected" range, are the ethoxy-substituted triazoles **1s** and **2s**, where the observed shifts are $\delta = 105.9$ and 113.8 ppm, respectively. Computational studies on triazoles **10** and **11** predict that the C_5 and C_4 carbons of these triazoles will be shifted upfield. Resonance interactions, as in **10a**, account for these upfield shifts.

Applications. During the attempted synthesis of 2r, we carried out the Cp*RuCl(PPh₃)₂ catalyzed reaction of PhCH₂N₃ with 1-propyn-3-one. This is a complex reaction, where significant amounts of the alkyne trimers 12 and 13 were formed. The major triazole isolated was 1r and not the expected isomer 2r. This example illustrates the need to assign

structure based on some experimental method, and not simply to assign structure based on the catalyst used.

A comment on the structure of phenyl-1,2,3-triazole^{8a,13} is appropriate. This triazole has been shown at various times as tautomer 14, 15, or 16.¹⁴ What then is the correct structure? The actual ¹³C NMR spectrum of phenyl-1,2,3-triazole in CDCl₃ shows a doublet (J = 190 Hz) at $\delta = 129.2$ ppm and a singlet at $\delta = 146.9$ ppm. These values are not consistent with either structure 14 or 15. Shown in Figure 3 are the B3LYP/6-

Figure 3. B3LYP/6-31G* GIAO calculated ¹³C shifts and relative energies of tautomeric triazoles **14–16**.

 $31G^*$ GIAO calculated ¹³C shifts of the appropriate carbons of **14-16**, as well as the relative energies. Since actual shifts are about 6 ppm downfield from the GIAO calculated shifts, the observed ¹³C shifts implicate tautomer **16** as the actual structure. Further evidence for tautomer **16** as the actual structure comes from the calculated energies of these tautomers. The lowest energy tautomer is **16**, which lies 4.3 and 5.0 kcal/mol lower than **14** and **15**, respectively. Consequently, one would expect **16** to predominate in any equilibrium, while **14** and **15** should not be observable by NMR.

In summary, 1,4-disubstituted-1*H*-1,2,3-triazoles **1** show a characteristic ¹³C signal at $\delta \sim 120$ ppm for C₅, while C₄ in the isomeric 1,5-disubstituted-1*H*-1,2,3-triazoles **2** appears at $\delta \sim 133$ ppm. These ¹³C signals are readily identified by the large 1-bond C–H coupling constant in the gated decoupled ¹³C NMR spectrum. B3LYP/6-31G* GIAO computational studies agree with this trend, although calculated shifts are consistently about 6 ppm upfield from actual values. This combination of ¹³C NMR and computational observations offers a simple method for distinguishing between triazoles **1** and **2**.

EXPERIMENTAL SECTION

General. NMR spectra were recorded on a Varian DirectDrive 600 MHz spectrometer. HRMS measurements were carried out using a Bruker MicroTOF-II spectrometer (electrospray ionization source with time-of-flight mass analyzer).

Preparation of Triazoles 1 by Cu(I)-Catalyzed Reactions. Method 1. General Comments. Triazoles 1 were prepared by the

The Journal of Organic Chemistry

copper(I)-catalyzed cycloaddition of the appropriate alkynes and azides using a water/CH₂Cl₂ solvent system.¹⁵ The presence of traces of copper in triazoles 1 prepared by this CuSO₄/sodium ascorbate method broadens C_5 (as well as C_4) and can make identification of these ¹³C signals problematic. Hence it is necessary to remove traces of copper impurities by passing the sample through a small amount of silica gel. Alternatively, addition of a small amount of Et₃N to the sample sharpens the ¹³C signals. Triazoles 1a, ¹⁶ 1b, ¹⁷ 1c, ¹⁸ 1e, ¹⁹ 1f, ²⁰ 1g, ²¹ 1h, ²² 1j, ²³ 1k, ²⁴ 1l, ²² 1n, ²⁵ 1o, ²⁶ 1p, ²⁷ 1q, ²⁸ 1r, ²⁹ and 1s, ³⁰ have been previously reported. Triazoles 1d, 1i, and 1m have not been previously reported. The following procedure for the preparation of 1d is representative.

Preparation of Triazole **1d**. *Method* **1**. A solution of 209 mg (1.65 mmol) of *n*-hexyl azide and 175 mg (2.13 mmol) of 1-hexyne in 4 mL of CH₂Cl₂ was stirred and 3 mL of water was added followed by 54 mg of CuSO₄·SH₂O. Sodium ascorbate (150 mg) was then added in small portions and the mixture was stirred for 24 h at room temperature. The CH₂Cl₂ phase was then separated and dried over MgSO₄. After filtration, the solvent was removed using a rotary evaporator and the residue was chromatographed on 3 g of silica gel. The column was eluted with increasing amounts of ether in pentane. Triazole **1d** (322 mg; 94% yield) eluted with 75% ether in pentane. ¹H NMR (CDCl₃) δ 7.24 (s, 1 H), 4.30 (t, *J* = 7.3 Hz, 2 H), 2.71 (t, *J* = 7.7 Hz, 2 H), 1.88 (m, 2 H), 1.65 (m, 2 H), 1.39 (m, 2 H), 1.31 (m, 6 H), 0.93 (t, *J* = 7.4 Hz, 3 H), 0.88 (t, *J* = 7.0 Hz, 3 H). ¹³C NMR (CDCl₃) δ 148.4, 120.3, 150.2, 31.6, 31.2, 30.3, 26.2, 25.4, 22.4, 22.3, 13.9, 13.8. HRMS (ESI) (MH⁺) calcd for C₁₂H₂₄N₃ 210.1965, found 210.1994.

Triazole 1i. This triazole was prepared in 98% yield by Method 1. ¹H NMR (CDCl₃) δ 7.36–7.24 (m, 10 H), 7.07 (s, 1 H), 4.28 (t, *J* = 7.4 Hz, 2 H), 3.96 (bs, 1 H), 1.86 (m, 2 H), 1.34–1.26 (m, 6 H), 0.87 (t, *J* = 7 Hz, 3 H). Irradiation of the 2 H triplet at δ = 4.28 ppm gives a 7% NOE of the 1 H singlet at δ = 7.07 ppm. ¹³C NMR (CDCl₃) δ 153.9, 145.8, 128.0, 127.4, 127.2, 122.3, 50.4, 31.0, 30.2, 26.1, 22.4, 13.9. HRMS (ESI) (MH⁺) calcd for C₂₁H₂₆N₃O 336.2070, found 336.2098.

Triazole **1m**. This triazole was prepared in 90% yield by Method 1. ¹H NMR (CDCl₃) δ 7.40–7.25 (m, 5 H), 7.32 (s, 1 H), 6.63 (d, *J* = 15.8 Hz, 1 H), 6.33 (d of t, *J* = 15.8, 6.6 Hz, 1 H), 5.08 (d of d, *J* = 6.7, 1.4 Hz, 2 H), 2.71 (t, *J* = 7.5 Hz, 2H), 1.64 (m, 2 H), 1.37 (m, 2 H), 0.92 (t, *J* = 7 Hz, 3 H). ¹³C NMR (CDCl₃) δ 148.8, 135.6, 135.0, 128.7, 128.5, 126.7, 122.3, 120.3, 52.2, 31.6, 25.4, 22.3, 13.8. HRMS (ESI) (MH⁺) calcd for C₁₅H₂₀N₃ 242.1652, found 242.1678.

Preparation of Triazoles 2 by Cp*RuCl(PPh₃)₂-Catalyzed Reactions. Method 2. Triazoles 2a,^{6a} 2b,³¹ 2c,^{6a} 2e, 2f,^{6a} 2i, 2j, 2l,^{7a} 2m, 2n, 2q,³² and 2s³³ were prepared by the Cp*RuCl(PPh₃)₂-catalyzed cycloaddition of the appropriate alkynes and azides.⁶ The following procedures for the preparation of 2i and 2n are representative.

Preparation of Triazole 2i. Method 2. n-Hexylazide (73 mg; 0.57 mmol) and 1,1-diphenylprop-2-yn-1-ol (101 mg; 0.49 mmol) were placed in a 10 mL flask under argon and 2.5 mL of C₆H₆ was added. The mixture was stirred as 8 mg of Cp*RuCl(PPh₃)₂ was added and the flask was heated to reflux under argon. After 100 min, 0.75 g of silica gel was added to the mixture and the C₆H₆ was the removed using a rotary evaporator. The solid residue was added to a chromatography column prepared from 4 g of silica gel. The column was eluted with increasing amounts of ether in pentane. The triazole 2i (126 mg, 77% yield) eluted with 50% ether in pentane as a white solid, mp 125–126 °C. ¹H NMR (CDCl₃) δ 7.37–7.30 (m, 3 H), 7.26–7.20 (m, 2 H), 6.88 (s, 1 H), 4.12 (m, 2 H), 3.83 (s, 1 H), 1.65 (m, 2 H), 1.19 (m, 2 H), 1.12 (m, 4 H), 0.82 (t, J = 7.2 Hz, 3 H). Irradiation of the 2 H multiplet at δ = 4.12 ppm gives no NOE of the 1 H singlet at δ = 6.88 ppm. ¹³C NMR (CDCl₃) δ 143.8, 141.6, 134.8, 128.4, 128.2, 126.9, 76.3, 49.7, 31.2, 29.5, 26.3, 22.4, 14.0. HRMS (ESI) (MH⁺) calcd for C21H26N3O 336.2070, found 336.2065.

Preparation of Triazole 2n. Method 2. Benzyl azide (113 mg; 0.85 mmol) was placed in a 10 mL flask under argon and 2 mL of C_6H_6 was added. Propiolaldehyde diethyl acetal (128 mg; 1.00 mmol) in 0.5 mL of C_6H_6 was then added followed by 8.8 mg of Cp*RuCl(PPh₃)₂. The mixture was then heated to reflux under argon for 4 h. About half of

the C₆H₆ was the removed using a rotary evaporator and the residue was chromatographed on 6 g of silica gel (column packed with 10% ether in pentane). The column was eluted with increasing amounts of ether in pentane. The triazole **2n** (183 mg, 83% yield) eluted with 50% ether in pentane. ¹H NMR (CDCl₃) δ 7.70 (s, 1 H), 7.36–7.27 (m, 3 H), 7.25–7.21 (m, 2 H), 5.63 (s, 2 H), 5.42 (d, *J* = 0.6 Hz, 1 H), 3.46 (m, 4 H), 1.15 (t, *J* = 7.0 Hz, 6 H). ¹³C NMR (CDCl₃) δ 134.9, 134.8, 134.0, 128.8, 128.2, 127.5, 94.4, 61.3, 52.4, 14.9. HRMS (ESI) (MH⁺) calcd for C₁₄H₂₀N₃O₂ 262.1550, found 262.1559.

Triazole 2e. This triazole was prepared in 94% yield by Method 2. ¹H NMR (CDCl₃) δ 7.73 (s, 1 H), 7.38–7.29 (m, 3 H), 7.19–7.15 (m, 2 H), 5.63 (s, 2 H), 5.02 (s, 2 H), 1.93 (s, 3 H). ¹³C NMR (CDCl₃) δ 170.0, 135.3, 134.6, 131.6, 129.0, 128.4, 127.1, 53.4, 52.2, 20.4. HRMS (ESI) (MH⁺) calcd for C₁₂H₁₃N₃O₂ 232.1086, found 232.1096.

Triazole 2j. This triazole was prepared in 67% yield by Method 2. ¹H NMR (CDCl₃) δ 7.72 (s, 1 H), 7.33–7.26 (m, 5 H), 7.23–7.15 (m, 2 H), 7.04–6.99 (m, 1 H), 6.85–6.81 (m, 2 H), 5.65 (s, 2 H), 4.90 (s, 2 H). ¹³C NMR (CDCl₃) δ 157.5, 134.6, 134.4, 132.3, 129.7, 129.0, 128.5, 127.6, 122.0, 114.6, 58.3, 52.6. HRMS (ESI) (MH⁺) calcd for C₁₆H₁₅N₃O 266.1288, found 266.1301.

Triazole **2m**. This triazole was prepared in 68% yield by Method 2. ¹H NMR (CDCl₃) δ 7.49 (s, 1 H), 7.36–7.24 (m, 5 H), 6.46 (d, *J* = 15.9 Hz, 1 H), 6.29 (d of t, *J* = 15.9, 6.0 Hz, 1 H), 5.08 (d of d, *J* = 6.0, 1.5 Hz, 2 H), 2.64 (t, *J* = 7.6 Hz, 2 H), 1.65 (m, 2 H), 1.40 (m, 2 H), 0.93 (t, *J* = 7.4 Hz, 3 H). ¹³C NMR (CDCl₃) δ 137.4, 135.6, 133.6, 132.4, 128.7, 128.3, 126.5, 122.6, 49.8, 30.1, 22.8, 22.3, 13.7. HRMS (ESI) (MH⁺) calcd for C₁₅H₂₀N₃ 242.1652, found 242.1665.

Preparation of Triazoles 2 by Reaction of Magnesium Acetylides with Azides. Method 3. Triazoles **2d**, **2g**, ^{7a} and **2h** were prepared by the reaction of the appropriate magnesium acetylide and azides. ^{7a} The following procedure for the preparation of **2d** is representative.

Ethylmagnesium bromide (1.50 mL of a 1.0 M solution in THF; 1.50 mmol) was placed in flask under argon and a solution of 122 mg of 1-hexyne (1.49 mmol) in 0.5 mL THF was added dropwise at 0 °C. The mixture was warmed to room temperature and after 1.5 h, 205 mg of n-hexyl azide (1.61 mmol) in 0.5 mL THF was added dropwise. After 7 h at room temperature, the mixture was cooled in ice and quenched with aqueous ammonium bromide solution. The mixture transferred to a separatory funnel using ether and the organic phase was washed with saturated salt solution. After drying over a mixture of Na₂SO₄ and MgSO₄, the solution was filtered and the solvent was removed using a rotary evaporator. The residue was chromatographed on 2.5 g of silica gel and the column was eluted with increasing amounts of ether in pentane. The triazole 2d (208 mg; 67% yield) eluted with 70% ether in pentane. ¹H NMR (CDCl₃) δ 7.44 (s, 1 H), 4.24 (t, J = 7.4 Hz, 2 H), 2.62 (t, J = 7.6 Hz, 2 H), 1.88 (m, 2 H), 1.66 (m, 2 H), 1.43 (m, 2 H), 2.32 (m, 6 H), 0.97 (t, J = 7.3 Hz, 3 H), 0.89 (t, J = 7.2 Hz, 3 H). ¹³C NMR (CDCl₃) δ 136.8, 132.0, 47.7, 31.2, 30.3, 30.1, 26.3, 22.9, 22.5, 22.3, 14.0, 13.7. HRMS (ESI) (MH⁺) calcd for $C_{12}H_{24}N_3$ 210.1965, found 210.1990.

Triazole 2h. This triazole was prepared in 70% yield by Method 3. ¹H NMR (CDCl₃) δ 7.59 (s, 1 H), 7.57–7.48 (m, 3 H), 7.46–7.42 (m, 2 H), 2.66 (t, *J* = 7.5 Hz, 2 H), 1.58 (m, 2 H), 1.33 (m, 2 H), 0.88 (t, *J* = 7.5 Hz, 3 H). ¹³C NMR (CDCl₃) δ 138.2, 136.4, 132.3, 129.42, 129.41, 125.2, 30.3, 23.3, 22.1, 13.6. HRMS (ESI) (MH⁺) calcd for C₁₂H₁₆N₃ 202.1339, found 202.1362.

Preparation of Triazole **2k**. Triazole **2k** was prepared by the Cp*Ru(PPh₃)₂Cl catalyzed cycloaddition of phenylacetylene with the dimethylacetal of PhCOCH₂N₃, followed by hydrolysis of the resultant triazole acetal. *α*-Azidoacetophenone dimethyl acetal (174 mg; 0.84 mmol) was placed in a flask under argon and 2 mL of C₆H₆ was added. Phenylacetylene (94 mg; 0.92 mmol) in 1 mL of C₆H₆ was then added followed by 9.5 mg of Cp*RuCl(PPh₃)₂. The mixture was then refluxed under argon for 5.5 h. About 1 g of silica gel was added to the mixture and the C₆H₆ was the removed using a rotary evaporator. The residue was chromatographed on 4 g of silica gel. The column was eluted with increasing amounts of ether in pentane. The dimethylacetal derivative of triazole **2k** (179 mg, 69% yield) eluted

with 50% ether in pentane. ¹H NMR (CDCl₃) δ 7.40 (s, 1 H), 7.31 (m, 1 H), 7.23 (m, 2 H), 7.14 (m, 2 H), 7.01 (m, 2 H), 6.89 (m, 2 H), 6.66 (m, 2 H), 4.72 (s, 2 H), 3.33 (s, 6 H). ¹³C NMR (CDCl₃) δ 138.9, 137.2, 132.4, 128.7, 128.6, 128.5, 128.3, 128.0, 126.7, 101.7, 51.1, 49.3.

A solution of 170 mg (0.55 mmol) of the acetal prepared above in 5 mL of THF was stirred as 2.0 g of 3% H₂SO₄ in water was added dropwise. The mixture was then heated at reflux for 20 h and then solid NaHCO₃ was then added to neutralize the H₂SO₄. The organic phase was then decanted and dried over a mixture of Na₂SO₄ and MgSO₄. After filtration the solvent was removed using a rotary evaporator. This residue was dissolved in CH₂Cl₂ and filtered through 1.8 g of silica gel in a column. The triazole **2k** (110 mg; 76% yield) eluted with CH₂Cl₂. ¹H NMR (CDCl₃) δ 7.92 (m, 2 H), 7.79 (s, 1 H), 7.64 (m, 1 H), 7.51 (m, 2 H), 7.44–7.39 (m, 3 H), 7.37–7.32 (m, 2 H), 5.81 (s, 2 H). ¹³C NMR (CDCl₃) δ 190.8, 139.2, 134.4, 134.0, 133.1, 129.7, 129.11, 129.07, 128.6, 128.1, 126.7, 54.0. HRMS (ESI) (MH⁺) calcd for C₁₆H₁₄N₃O 264.1131, found 264.1152.

Preparation of Triazole **2p**. Triazole **2p**³⁴ was prepared by hydrolysis of **2n**. A solution of 154 mg (0.59 mmol) of the acetal **2n** in 10 mL of THF was stirred as 2.7 g of 3% H₂SO₄ in water was added dropwise. The stirred solution was heated for 41 h at 50–52 °C and the mixture was then neutralized with NaHCO₃. Most of the THF was removed using a rotary evaporator and 4 mL of water and 7 mL of CH₂Cl₂ was added. The CH₂Cl₂ phase was dried over Na₂SO₄, filtered, and the solvent was removed using a rotary evaporator to give 111 mg (100% yield) of aldehyde **2p**.³⁴ ¹H NMR (CDCl₃) δ 9.95 (s, 1 H), 8.25 (s, 1 H), 7.37–7.28 (m, 5 H), 5.90 (s, 2 H). ¹³C NMR (CDCl₃) δ 178.2, 141.2, 134.4, 133.4, 128.9, 128.7, 128.2, 53.8.

Preparation of Triazole **20.** Triazole **20**³⁵ was prepared by NaBH₄ reduction of **2p**. A solution of 17 mg (0.091 mmol) of aldehyde **2p** in 1 mL of methanol was cooled in a water bath to 15 °C as 15 mg of solid NaBH₄ (0.41 mmol) was added in small portions. After stirring for 4 h at room temperature, the methanol was removed using a rotary evaporator. A few drops of 10% HCl in water were added followed by 1 mL of water and the mixture was extracted with 3 mL of CH₂Cl₂. The CH₂Cl₂ extract was dried over Na₂SO₄ and the solvent was removed using a rotary evaporator to give 15 mg (87% yield) of triazole **20**.^{35 1}H NMR (CDCl₃) δ 7.52 (s, 1 H), 7.35–7.28 (m, 3 H), 7.25–7.21 (m, 2 H), 5.63 (s, 2 H), 4.58 (s, 2 H). ¹³C NMR (CDCl₃) δ 136.3, 134.8, 133.2, 129.0, 128.4, 127.6, 53.1, 46.0.

Preparation of Triazole 2r. Triazole $2r^{36}$ was prepared by addition of CH₃MgBr to 2p followed by PCC oxidation of the resultant alcohol. Tetrahydrofuran (2 mL) was placed in a flask under argon and 1.4 mL of 0.75 M CH₃MgI in ether (1.05 mmol) was added. A solution of 105 mg of triazole 2p (0.56 mmol) in 2 mL of THF was added dropwise to the stirred solution. The mixture was then warmed at 35 °C for 10 min, cooled in a water bath, and then quenched with aqueous ammonium bromide solution. The organic phase was separated, dried using Na₂SO₄, and the solvent was removed using a rotary evaporator. The residue was dissolved in CH₂Cl₂ and redried using Na₂SO₄. Solvent removal using a rotary evaporator gave 93 mg of crude alcohol product that was used directly in the next step.

A solution of the alcohol prepared above (84 mg; 0.46 mmol) in 2 mL of CH₂Cl₂ was stirred as 103 mg of pyridinium chlorochromate (0.48 mmol) was added in small portions. After stirring for 6 h at room temperature, 5 mL of ether was added to the dark mixture and the organic phase was filtered through a small amount of silica gel in a pipet. The solvent was then removed using a rotary evaporator to give 40 mg (48% yield) of triazole $2r.^{36}$ ¹H NMR (CDCl₃) δ 8.16, 7.38–7.27 (m, 5 H), 5.90 (s, 2 H), 2.53 (s, 3 H). ¹³C NMR (CDCl₃) δ 187.1, 136.6, 134.9, 133.1, 128.7, 128.4, 128.2, 53.6, 28.8.

ASSOCIATED CONTENT

S Supporting Information

Complete ref 12, the B3LYP/6-31G* calculated structures, energies, and Cartesian coordinates of 6, 7, 8, 9, 10, 11, 14, 15, and 16, and ¹H and ¹³C NMR spectra of triazoles 1a–1s, 2a–

2s, and **16**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*creary.1@nd.edu

Notes

The authors declare no competing financial interest.

REFERENCES

(1) (a) Huisgen, R. P. Chem. Soc. London 1961, 357. (b) Huisgen, R. Pure Appl. Chem. 1989, 61, 613.

(2) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.

(3) (a) Holzer, W. Tetrahedron 1991, 47, 9783. (b) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.

(4) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.

(5) (a) Evans, R. A. Aust. J. Chem. 2007, 60, 384. (b) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249. (c) Kempe, K.; Krieg, A.; Becer, C. R.; Schubert, U. S. Chem. Soc. Rev. 2012, 41, 176.
(6) (a) Zhang, L.; Chen, X.; Xue, P.; Sun, H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia., G. J. Am. Chem. Soc. 2005, 127, 15998. (b) Rasmussen, L. K.; Boren, B. C.; Fokin, V. V. Org. Lett. 2007, 9, 5337. (c) Johansson, J. R.; Lincoln, P.; Nordén, B.; Kann, N. J. Org. Chem. 2011, 76, 2355.

(7) (a) Krasinski, A.; Fokin, V. V.; Sharpless, K. B. Org. Lett. 2004, 6, 1237. (b) Akimova, G. S.; Chistokletov, V. N.; Petrov, A. A. Zh. Org. Khim. 1967, 3, 968. (c) Akimova, G. S.; Chistokletov, V. N.; Petrov, A. A. Zh. Org. Khim. 1967, 3, 2241. (d) Akimova, G. S.; Chistokletov, V. N.; Petrov, A. A. Zh. Org. Khim. 1968, 4, 389.

(8) (a) Kalisiak, J.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2008, 10, 3171. (b) Cohrt, A. E.; Jensen, J. F.; Nielsen, T. E. Org. Lett. 2010, 12, 5414. (c) Oliva, C. G.; Jagerovic, N.; Goya, P.; Alkorta, I.; Elguero, J.; Cuberes, R.; Dordal, A. ARKIVOC 2010, 127.

(9) Stefely, J. A.; Palchaudhuri, R.I; Miller, P. A.; Peterson, R. J.; Moraski, G. C.; Hergenrother, P. J.; Miller, M. J. *J. Med. Chem.* **2010**, *53*, 3389.

(10) Testero, S. A.; Llarrull, L. I.; Fisher, J. F.; Chang, M.; Mobashery, S. ARKIVOC 2011, 221.

(11) Smith, B. A.; O'Neil, E. J.; Lampkins, A. J.; Johnson, J. R.; Cole, E.; Smith, B. D. J. Fluoresc. **2012**, *22*, 93.

(12) Frisch, M. J. et al. *Gaussian 09*, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.

(13) Ueda, S.; Su, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 8944.

(14) Tautomers 14 (1680-44-0) and 16 (112614-96-7) even have different CAS registry numbers, while commercial sources of phenyl-1,2,3-triazole show the structure as 14 or 15.

(15) Lee, B.-Y.; Park, S. R.; Jeon, H. B.; Kim, K. S. Tetrahedron Lett. 2006, 47, 5105.

(16) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853.

(17) Shao, C.; Wang, X.; Xu, J.; Zhao, J.; Zhang, Q.; Hu, Y. J. Org. Chem. **2010**, 75, 7002.

(18) Diez-Gonzalez, S. D.; Nolan, S. P. Angew. Chem., Int. Ed. 2008, 47, 8881.

(19) Gonda, Z.; Novak, Z. Dalton Trans. 2010, 39, 726.

(20) Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E. Org. Lett. 2004, 6, 4223.

(21) Li, P.; Wang, L.; Zhang, Y. Tetrahedron 2008, 64, 10825.

(22) Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Tetrahedron Lett. 2009, 50, 2358.

(23) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.

(24) Smith, C. D.; Baxendale, I. R.; Lanners, S.; Hayward, J. J.; Smith, S. C.; Ley, S. V. Org. Biomol. Chem. 2007, 5, 1559.

8760

The Journal of Organic Chemistry

(25) Girard, C.; Oenen, E.; Aufort, M.; Beauviere, S.; Samson, E.; Herscovici, J. Org. Lett. 2006, 8, 1689.

- (26) Orgueira, H. A.; Fokas, D.; Isome, Y..; Chan, P. C.-M.; Baldino, C. M. Tetrahedron Lett. **2005**, 46, 2911.
- (27) Wiley, R. H.; Smith, N. R.; Johnson, D. M.; Moffat, J. J. Am. Chem. Soc. 1955, 77, 3412.
- (28) Shao, C.-W.; Wang, X.-Y.; Zhang, Q.; Luo, S.; Zhao, J.-C.; Hu, Y.-F. J. Org. Chem. 2011, 76, 6832.
- (29) Cuevas, F.; Oliva, A. I.; Pericas, M. A. Synlett 2010, 1873.
- (30) Smith, N. M.; Greaves, M. J.; Jewell, R.; Perry, M. W. D.; Stocks, M. J.; Stonehouse, J. P. Synlett **2009**, 1391.
- (31) Li, P.; Wang, L. Lett. Org. Chem. 2007, 4, 23.
- (32) Holzer, W. Tetrahedron 1991, 47, 9783.
- (33) Saalfrank, R. W.; Ackermann, E. Liebigs Ann. Chem. 1981, 1, 7.
- (34) Khramchikhin, A. V.; Stadnichuk, M. D. Zh. Obshchei Khim. 1991, 61, 2012.
- (35) L., G.; Serebryakova, E. S.; Maksikova, A. V.; Chernysheva, G. V.; Vereshchagin, L. I. *Zh. Org. Khim.* **1981**, *17*, 1401.
- (36) Elamari, H.; Jlalia, I.; Louet, C.; Herscovici, J.; Meganem, F.; Girard, C. Tetrahedron: Asymmetry 2010, 21, 1179.